Respuesta :

TSO
[tex]4x^3 + 8x^2 - 25x - 50 = \\ 4x^2(x + 2) - 25(x + 2)=\\ (4x^2 - 25)(x+2)=\\\\ \boxed{\bf{(2x - 5)(2x + 5)(x+2)}}[/tex]

Answer:

The factored form is (x+2)(2x+5)(2x-5)

Step-by-step explanation:

The given expression which we need to factor is [tex]4x^3+8x^2-25x-50[/tex]

We can factor it by grouping method.

Make groups as shown below.

[tex](4x^3+8x^2)+(-25x-50)[/tex]

Take GCF from each groups

[tex]4x^2(x+2)-25(x+2)[/tex]

Factored out the common terms

[tex](x+2)(4x^2-25)[/tex]

Now, we can further factored [tex]4x^2-25[/tex] using the difference of squares formula [tex]a^2-b^2=(a+b)(a-b)[/tex]

Writing in perfect square form

[tex](x+2)((2x)^2-5^2)[/tex]

Using the difference of square formula

[tex](x+2)(2x+5)(2x-5)[/tex]

Thus, the factored form is (x+2)(2x+5)(2x-5)