Respuesta :
f(x) = ㏒(10x)
f(x) = ㏒₁₀(10x)
10y = 6
10 10
y = 0.6
f(x) = ㏒₁₀(10x)
0.6 = ㏒₁₀(10x)
[tex]10^{0.6} = 10x[/tex]
[tex]10^{\frac{3}{5}} = 10x[/tex]
[tex]\sqrt[5]{10^{3}} = 10x[/tex]
[tex]\sqrt[5]{1000} = 10x[/tex]
[tex]\frac{\sqrt[5]{1000}}{10} = x[/tex]
[tex]\frac{3.98}{10} \approx x[/tex]
[tex]0.398 \approx x[/tex]
f(x) = ㏒₁₀(10x)
10y = 6
10 10
y = 0.6
f(x) = ㏒₁₀(10x)
0.6 = ㏒₁₀(10x)
[tex]10^{0.6} = 10x[/tex]
[tex]10^{\frac{3}{5}} = 10x[/tex]
[tex]\sqrt[5]{10^{3}} = 10x[/tex]
[tex]\sqrt[5]{1000} = 10x[/tex]
[tex]\frac{\sqrt[5]{1000}}{10} = x[/tex]
[tex]\frac{3.98}{10} \approx x[/tex]
[tex]0.398 \approx x[/tex]
The given function is
f(x)= log 10 x
Taking base as 10
[tex]y=\log_{10}10 +\log_{10}x[/tex]→→Using the property of, log a b= log a + log b
→y = 1 + [tex]\log_{10}x[/tex] as, [tex]\log_{10}10=1[/tex]
we have to approximate the value of y in the equation
→10 y = 6
→y=[tex]\frac{6}{10}[/tex]
[tex]\frac{6}{10}[/tex]= 1 + [tex]\log_{10}x[/tex]
[tex]\log_{10}x[/tex] = [tex]\frac{-4}{10}[/tex]
x= [tex](10)^{\frac{-4}{10}}[/tex]=[tex](10)^{-0.4}[/tex]=0.398
Solving graphically,
we get , x= 0.398 for , y= [tex]\frac{6}{10}[/tex]=.6
