Respuesta :

f(x) = ㏒(10x)
f(x) = ㏒₁₀(10x)

10y = 6
 10    10
    y = 0.6

f(x) = ㏒₁₀(10x)
0.6 = ㏒₁₀(10x)
[tex]10^{0.6} = 10x[/tex]
[tex]10^{\frac{3}{5}} = 10x[/tex]
[tex]\sqrt[5]{10^{3}} = 10x[/tex]
[tex]\sqrt[5]{1000} = 10x[/tex]
[tex]\frac{\sqrt[5]{1000}}{10} = x[/tex]
[tex]\frac{3.98}{10} \approx x[/tex]
[tex]0.398 \approx x[/tex]

The given function is

f(x)= log 10 x

Taking base as 10

[tex]y=\log_{10}10 +\log_{10}x[/tex]→→Using the property of, log a b= log a + log b

→y = 1 + [tex]\log_{10}x[/tex] as, [tex]\log_{10}10=1[/tex]

we have to approximate the value of y in the equation

→10 y = 6

→y=[tex]\frac{6}{10}[/tex]

[tex]\frac{6}{10}[/tex]= 1 + [tex]\log_{10}x[/tex]  

[tex]\log_{10}x[/tex] =  [tex]\frac{-4}{10}[/tex]

x= [tex](10)^{\frac{-4}{10}}[/tex]=[tex](10)^{-0.4}[/tex]=0.398

Solving graphically,

we get , x= 0.398 for , y= [tex]\frac{6}{10}[/tex]=.6

Ver imagen Аноним