Respuesta :

(n^4 - 1) = (n^2 - 1) (n^2 +1) = (n - 1) (n + 1) (n^2 + 1)

Answer: Hello there!

here we have the equation n^4 - 1

using the relation: [tex](a^{2} - b^{2}) = (a+b)*(a-b)[/tex]

we can write our equation as:

[tex](n^{4} - 1) = ((n^{2} )^{2} -1^{2} ) = (n^{2} + 1)(n^{2} - 1) = (n^{2} + 1)(n + 1)(n-1)[/tex]

and (n^2 + 1) has only complex roots, i and - i, then we can factorize this as (n -i)(n + i) = n*n + ni - ni (+i)*(-i) = (n^2 + 1)

then our equation is: [tex](n^{2} + 1)(n + 1)(n-1) =  (n + i)(n - i)(n + 1)(n-1)[/tex]