Respuesta :

Answer:

Combination

Step-by-step explanation:

Here by 10C7 we actually mean, [tex]C_{7}^{10}[/tex]

And the formula for evaluating mCn is

[tex]=\frac{m!}{n!*(m-n)!}[/tex]

Therefore

10C7 =  

[tex]=\frac{10!}{7!*(10-7)!} \\=\frac{10!}{7!*3!} \\[/tex]

Where m! is called m factorial and can be evaluated as

m!= m*(m-1)*(m-2)*(m-3)*.......3*2*1

Hence

10!= 10*9*8......*3*2*1

7!= 7*8*6.....3*2*1

3!=3*2*1

With these we can evaluate

10C7

[tex]=\frac{10*9*8*7*.....3*2*1}{(3*2*1)*(7*6*5....3*2*1)}\\=\frac{10*9*8}{3*2*1} \\=\frac{10*3*4}{1} \\=120[/tex]

Hence the answer is D

Answer:

120

Step-by-step explanation: