Respuesta :
If you would like to find AB - C in simplest form, you can do this using the following steps:
A = n
B = 2n + 6
C = n^2 - 1
AB - C = n * (2n + 6) - (n^2 - 1) = 2n^2 + 6n - n^2 + 1 = n^2 + 6n + 1
The correct result would be B=n2 + 6n + 1.
A = n
B = 2n + 6
C = n^2 - 1
AB - C = n * (2n + 6) - (n^2 - 1) = 2n^2 + 6n - n^2 + 1 = n^2 + 6n + 1
The correct result would be B=n2 + 6n + 1.
Answer:
[tex]AB-C=n^{2} +6n +1[/tex]
Step-by-step explanation:
Given :
[tex]A = n[/tex]
[tex]B=2n+6[/tex]
[tex]C=n^{2} -1[/tex]
To Find: AB-C
Solution:
Since A=n
B=2n+6
So, [tex]AB=2n^{2} +6n[/tex]
Now since [tex]C=n^{2} -1[/tex]
Thus [tex]AB-C=2n^{2} +6n-(n^{2} -1)[/tex]
⇒[tex]AB-C=2n^{2} +6n-n^{2} +1[/tex]
⇒ [tex]AB-C=n^{2} +6n +1[/tex]
Thus option B is correct .