Respuesta :
[tex]\displaystyle \\ \frac{ \sqrt{2} -\sqrt{6}}{\sqrt{2} +\sqrt{6}} = \frac{ (\sqrt{2} -\sqrt{6})(\sqrt{2} -\sqrt{6})}{(\sqrt{2} +\sqrt{6})(\sqrt{2} -\sqrt{6})} = \\ \\ \\ = \frac{ (\sqrt{2} -\sqrt{6})^2}{(\sqrt{2})^2 -(\sqrt{6})^2} = \frac{ 2-2\sqrt{2}\sqrt{6} + 6}{2 -6} = \\ \\ \\ = \frac{ 8-2\sqrt{12} }{-4} = \frac{ 8-2\sqrt{4\times 3} }{-4} = \frac{ 8-4\sqrt{3} }{-4} = \boxed{-2+\sqrt{3}}[/tex]
Answer:
[tex]-2+\sqrt{3}[/tex]
Step-by-step explanation:
we have
[tex]\frac{\sqrt{2}-\sqrt{6}}{\sqrt{2}+\sqrt{6}}[/tex]
Multiply the expression by the conjugate of denominator
[tex]\frac{\sqrt{2}-\sqrt{6}}{\sqrt{2}+\sqrt{6}}*\frac{\sqrt{2}-\sqrt{6}}{\sqrt{2}-\sqrt{6}}\\ \\=-(\sqrt{2}-\sqrt{6})^{2}/4[/tex]
[tex]=-(1/4)*(2-4\sqrt{3}+6)\\ \\=-(1/4)*(8-4\sqrt{3})\\ \\=-2+\sqrt{3}[/tex]