Respuesta :
A2 - (B + C) = (3x - 4)2 - ((x + 7)+ (x2 + 2))
A2 - (B + C) = 9x2 - 24x + 16 - (x2 + x + 9)
A2 - (B + C) = 9x2 - 24x + 16 - x2 - x - 9
A2 - (B + C) = 8x2 - 25x + 7
So, the answer is
A:
8x2 – 25x + 7
A2 - (B + C) = 9x2 - 24x + 16 - (x2 + x + 9)
A2 - (B + C) = 9x2 - 24x + 16 - x2 - x - 9
A2 - (B + C) = 8x2 - 25x + 7
So, the answer is
A:
8x2 – 25x + 7
Answer: [tex]8x^2 - 25x + 7[/tex]
Step-by-step explanation:
Here, [tex]A = 3x - 4[/tex], [tex]B = x + 7[/tex] and [tex]C = x^2 + 2[/tex]
[tex]A^2 - (B + C)= (3x-4)^2-(x+7+x^2+2)[/tex] ( By putting the values)
= [tex] (3x)^2+ (4)^2- 2\times 3x\times 4- x- 7 - x^2 -2[/tex] ( solving the brackets)
= [tex] 9x^2+ 16 - 24x - x- 7 - x^2 -2[/tex]
= [tex] 8x^2- 25x + 7[/tex] ( By operating like terms)
⇒ [tex]A^2 - (B + C) = 8x^2- 25x + 7[/tex]
Thus, Option A is correct.