Respuesta :

caylus
Hello,

0=6x²-11x-10=6x²-15x+4x-10=3x(2x-5)+2(2x-5)=(2x-5)(3x+2)

Zeroes are: x=5/2 and x=-2/3

Answer:

The zeros of the given polynomial  [tex]6x^2-11x-10=0[/tex] are [tex]\frac{5}{2}[/tex] and [tex]\frac{-2}{3}[/tex] .

Step-by-step explanation:

Consider the given polynomial,

[tex]6x^2-11x-10=0[/tex]

We have to find the zeros of the given quadratic equation,

Solving using middle term splitting method,

-11x can be written as a sum of -15x and 4x and it will given product as -60.

The equation thus can be written as,

[tex]6x^2-11x-10=0[/tex]

[tex]\Rightarrow 6x^2+4x-15x-10=0[/tex]

[tex]\Rightarrow 2x(3x+2)-5(3x+2)=0[/tex]

[tex]\Rightarrow (2x-5)(3x+2)=0[/tex]

[tex]\Rightarrow x=\frac{5}{2}[/tex] and [tex]\Rightarrow x=\frac{-2}{3}[/tex]

Zeros satisfies the polynomial , when we put them back in the equation, it must give result as zero.

Thus, the zeros of the given polynomial  [tex]6x^2-11x-10=0[/tex] are [tex]\frac{5}{2}[/tex] and [tex]\frac{-2}{3}[/tex]