Respuesta :
Given:
6CO2 + 6H2O -> C6H12O6 + 6O2
molar mass of carbon dioxide (CO2) is 44.01 g/mol
molar mass of water (H2O) is 18.01 g/mol
528 g of CO2
Required:
moles of water
Solution:
528 g of CO2/ (44.01 g/mol CO2) = 12 moles CO2
12 moles CO2 (6 moles H2O/ 6 moles CO2) = 12 moles H2O
12 moles H2O (18.01 g/mol H2O) = 216.12 grams H2O
6CO2 + 6H2O -> C6H12O6 + 6O2
molar mass of carbon dioxide (CO2) is 44.01 g/mol
molar mass of water (H2O) is 18.01 g/mol
528 g of CO2
Required:
moles of water
Solution:
528 g of CO2/ (44.01 g/mol CO2) = 12 moles CO2
12 moles CO2 (6 moles H2O/ 6 moles CO2) = 12 moles H2O
12 moles H2O (18.01 g/mol H2O) = 216.12 grams H2O
Answer:
12 mol of water
Explanation:
[tex]6CO_2 + 6H_2O \longrightarrow C_6H_{12}O_6 + 6O_2[/tex]
First we must find the moles of CO2.
We know that 1 mole of co2 has a mass of 4.01 g so how many moles will there be in 528 g.
We apply a simple rule of three
[tex]44.01 g CO_2\longrightarrow 1 mol CO_2\\ 528 g CO_2\longrightarrow x\\x= 528/44.01\\x=12 molCO_2[/tex]
By stoichiometry we know that for every 6 moles of carbon dioxide 6 moles of water are needed, now if we have 12 moles of carbon dioxide how many moles of water will be needed
We apply a simple rule of three
[tex]6 molCO_2 \longrightarrow 6 mol H_2O\\ 12 mol CO_2 \longrightarrow x\\x= \frac{(12).(6)}{6}\\ x= 12 mol H_2O[/tex]