Respuesta :

caylus
Hello,

Pascal Triangle:
1
1  1
1  2    1
1  3    3  1
1  4   6  4 1
1  5 10 10 5 1
1  6 15 20 15 6 1

x^6+6x^5y+15 x^4y² +20 x^3y^3 + 15 x²y^4+6 x y^5 +y^6


Answer:

x^6+6x^5y+15x^4y^2+20x^3y^3+15x^2y^4+6xy^5+y^6

Step-by-step explanation:

expansion of the binomial (x + y)^6

USe Pascals triangle

6th row in pascals triangle is

1   6    15    20    15    6    1

Now we do the expansion using the above row.

nCr (x)^n-r  (y)^r

1 (x)^6(y)^0+ 6(x)5(y)^1+ 15(x)^4(y)^2+20(x)^3(y)^3+15(x)^2(y)^4+6(x)^1(y)^5+1(x)^0(y)^6

[tex]x^6+6x^5y+15x^4y^2+20x^3y^3+15x^2y^4+6xy^5+y^6[/tex]