The variables A, B, and C represent polynomials where A = x2, B = 3x + 2, and C = x – 3. What is AB – C2 in simplest form?

Respuesta :

Hagrid
AB - C2 = (x2)(3x + 2) - (x-3)2
AB - C2 = 3x3 + 2x2 - (x2 -6x +9)
AB - C2 = = 3x3 + 2x2 - x2 + 6x - 9
AB - C2 = = 3x3 + x2 + 6x - 9

Answer:

[tex]AB-C^2[/tex] in simplest form:

[tex]3x^3+x^2+6x-9[/tex]

Step-by-step explanation:

The distributive property says that:

[tex]a \cdot (b+c) =a\cdot b+ a\cdot c[/tex]

Given that:

The variables A, B, and C represent polynomials

Where,

[tex]A = x^2[/tex]

[tex]B = 3x+2[/tex]

[tex]C = x-3[/tex]

We have to find the [tex]AB-C^2[/tex]

then;

[tex]AB-C^2[/tex] =[tex](x^2)(3x+2)-(x-3)^2[/tex]

Apply the distributive property :

[tex](3x^3+2x^2)-(x-3)^2[/tex]

⇒[tex]3x^3+2x^2-(x^2+9-6x)[/tex]

Remove the bracket, we have;

[tex]3x^3+2x^2-x^2-9+6x[/tex]

Combine like terms;

[tex]3x^3+x^2+6x-9[/tex]

Therefore, [tex]AB-C^2[/tex] in simplest form: [tex]3x^3+x^2+6x-9[/tex]