Respuesta :
(t o s)(x) = t(s(x))
s(x) = x - 7
t(x - 7) = 4(x-7)^2 - (x - 7) + 3
s(x) = x - 7
t(x - 7) = 4(x-7)^2 - (x - 7) + 3
Answer:
[tex]4(x-7)^2-(x-7)+3[/tex]
Step-by-step explanation:
Given the functions:
[tex]s(x)=x-7[/tex] and [tex]t(x)=4x^2-x+3[/tex]
We have to find the [tex](t \circ s)(x)[/tex]
[tex](t \circ s)(x) = t(s(x))[/tex]
Substitute the function s(x) we have;
⇒[tex]t(s(x)) = t(x-7)[/tex]
Replace x with x-7 in t(x) we have;
⇒[tex]t(x-7) = 4(x-7)^2-(x-7)+3[/tex]
⇒[tex](t \circ s)(x) = 4(x-7)^2-(x-7)+3[/tex]
Therefore, the expression which is equivalent to [tex](t \circ s)(x)[/tex] is:
[tex]4(x-7)^2-(x-7)+3[/tex]