Respuesta :

(t o s)(x) = t(s(x)) 
s(x) = x - 7 
t(x - 7) = 4(x-7)^2 - (x - 7) + 3

Answer:

[tex]4(x-7)^2-(x-7)+3[/tex]

Step-by-step explanation:

Given the functions:

[tex]s(x)=x-7[/tex] and [tex]t(x)=4x^2-x+3[/tex]

We have to find the [tex](t \circ s)(x)[/tex]

[tex](t \circ s)(x) = t(s(x))[/tex]

Substitute the function s(x) we have;

⇒[tex]t(s(x)) = t(x-7)[/tex]

Replace x with x-7 in t(x) we have;

⇒[tex]t(x-7) = 4(x-7)^2-(x-7)+3[/tex]

⇒[tex](t \circ s)(x) = 4(x-7)^2-(x-7)+3[/tex]

Therefore, the expression which is equivalent to [tex](t \circ s)(x)[/tex] is:

[tex]4(x-7)^2-(x-7)+3[/tex]