Respuesta :
[tex]_{3}P_{0} = \frac{3!}{(3 - 0)!}[/tex]
[tex]_{3}P_{0} = \frac{3!}{3!}[/tex]
[tex]_{3}P_{0} = \frac{3 * 2 * 1}{3 * 2 * 1}[/tex]
[tex]_{3}P_{0} = 1[/tex]
The answer is B.
[tex]_{3}P_{0} = \frac{3!}{3!}[/tex]
[tex]_{3}P_{0} = \frac{3 * 2 * 1}{3 * 2 * 1}[/tex]
[tex]_{3}P_{0} = 1[/tex]
The answer is B.
Answer:
Option B. 1
Step-by-step explanation:
We have to find the value of P(3, 0)
We have to find the value of given permutation [tex]^{3}P_{0}[/tex]
Since we know [tex]^{a}P_{b}=\frac{a!}{(a-b)!}[/tex]
Here a = 3
b = 0
[tex]^{3}P_{0}=\frac{3!}{(3-0)!}[/tex]
[tex]=\frac{3!}{3!}=1[/tex]
Therefore, option B. 1 is the answer.