5. What is a cubic polynomial function in standard form with zeros 1, –2, and 2? (1 point)
= x3 + x2 – 3x + 4
= x3 + x2 – 4x – 2
= x3 + x2 + 4x + 4
= x3 – x2 – 4x + 4

Respuesta :

caylus
Hello,

Answer D
(x-1)(x+2)(x-2)=(x-1)(x²-4)=x^3-x²-4x+4

Answer:

Option D is correct

The cubic polynomial function in standard form is :

[tex]x^3-x^2-4x+4[/tex]

Step-by-step explanation:

Given the zeroes of the polynomial function 1 , -2 and 2.

i.e,   x = 1 , -2 and 2  where x is the zero of the polynomial function.

we can write this as

x - 1 = 0,

x + 2 = 0 or

x - 2 = 0  

(x - 1)(x + 2)(x - 2) =0  

Using identities [tex](a+b)(a-b) =a^2-b^2[/tex]

then;

[tex](x-1)(x^2-4)=0[/tex]

Multiply the first term of the first expression with second expression;

[tex]x (x^2-4) =x^3-4x[/tex]

also,

Multiply the second term of the first expression with second expression;

[tex]1(x^2-4) = x^2 -4[/tex]

Now, subtract [tex]x^3-4x[/tex] and [tex]x^2 -4[/tex]

we get;

[tex]x^3-4x-x^2+4[/tex]

then, we have;

[tex]x^3-x^2-4x+4=0[/tex]

Cubic function is any function of the form [tex]y = ax^3 + bx^2 + cx + d,[/tex] where a, b, c, and d are constants and a≠0

therefore, the given function is cubic function;

so, the cubic function f(x) = [tex]x^3-x^2-4x+4[/tex]