Respuesta :

Answer:

20.7%.

Step-by-step explanation:

We have been given that Sam Seller offers credit at 19% interest per year.

We will annual percent yield formula to solve our given problem.

[tex]APY=(1+\frac{r}{n})^n-1[/tex], where,

r = Interest rate in decimal form,

n = Number of times interest is compounded per year.

Let us convert our given interest rate in decimal form.

[tex]19\%=\frac{19}{100}=0.19[/tex]

Upon substituting our given values in above formula we will get,

[tex]APY=(1+\frac{0.19}{12})^{12}-1[/tex]

[tex]APY=(1+0.015833)^{12}-1[/tex]

[tex]APY=(1.015833)^{12}-1[/tex]

[tex]APY=1.207450998-1[/tex]

[tex]APY=0.207450998[/tex]

Let us convert APY in percentage by multiplying our answer by 100.

[tex]APY=0.207450998\times 100[/tex]

[tex]APY=20.7450998\%\approx 20.7\%[/tex]

Therefore, the APY is 20.7%.

Answer:

[tex]\text{APR}=20.7\%[/tex]              

Step-by-step explanation:

Given : Sam Seller offers credit at 19% interest per year.

To find : To the nearest tenth, APR ?

Solution :

The formula to calculate the annual percentage rate is given by

[tex]\text{APR}=(1+\dfrac{r}{n})^n-1[/tex]

where, r is the interest rate i.e. r=19%=0.19

n is the number of time period for which interest is compounded per month i.e. n=12.

Substitute in the formula,

[tex]\text{APR}=(1+\dfrac{0.19}{12})^{12}-1[/tex]

[tex]\text{APR}=(1+0.01583)^{12}-1[/tex]

[tex]\text{APR}=(1.01583)^{12}-1[/tex]

[tex]\text{APR}=1.2074-1[/tex]

[tex]\text{APR}=0.2074[/tex]

Into percentage,

[tex]\text{APR}=0.2074\times 100[/tex]

[tex]\text{APR}=20.74\%[/tex]

To the nearest tenth,

[tex]\text{APR}=20.7\%[/tex]