Respuesta :
Answer:
(-14,-54)
Step-by-step explanation:
The first function passes through the points (-6,-22), (-3,-10), (0,2) and (3,14).
Now, the equation of the function can be determined from any two points say (0,2) and (3,14).
The equation is [tex]\frac{y - 14}{14 - 2} = \frac{x - 3}{3 - 0}[/tex]
⇒ y - 14 = 4x - 12
⇒ y = 4x + 2 ........... (1)
Now, the second function passes through the points (-6,-30), (-3,-21), (0,-12) and (3,-3).
Now, the equation of the function can be determined from any two points say (0,-12) and (3,-3).
The equation is [tex]\frac{y + 3}{-3 - (- 12)} = \frac{x - 3}{3 - 0}[/tex]
⇒ y + 3 = 3(x - 3)
⇒ y = 3x - 12 ........... (2)
Now, solving equations (1) and (2) we get,
3x - 12 = 4x + 2
⇒ x = - 14
Again, from equation (2), we get
y = 3(- 14) - 12 = - 54
Therefore, the solution is (-14,-54). (Answer)