Use the given information to find the number of degrees of​ freedom, the critical values chi Subscript Upper L Superscript 2 and chi Subscript Upper R Superscript 2​, and the confidence interval estimate of sigma. It is reasonable to assume that a simple random sample has been selected from a population with a normal distribution. Nicotine in menthol cigarettes 98​% ​confidence; nequals28​, sequals0.22 mg.

Respuesta :

Answer:

Chi-Square value for lower bond: X²[tex]_{27;0.99}[/tex]= 46963

Chi-Square value for upper bond: X²[tex]_{27;0,01}[/tex]= 12.878

Confidence interval:  [0.0278;0.1001]

Step-by-step explanation:

Hello!

You need to make a 98% Confidence interval for the population variance of a single sample. To construct it you have to use a Chi-Square statistic:

X²= (n-1)S² ~X²[tex]_{n-1}[/tex]

         σ²

The formula for the interval is:

Lower bond:

          (n-1)S²                 =           27*0.0484             = 1.3068 = 0.0278

X²[tex]_{n-1;1-α/2}[/tex]       X²[tex]_{27;0.99}[/tex]       46.963

Upper bond:

          (n-1)S²                 =           2*0.0484               = 1.3068 = 0.1001

X²[tex]_{n-1;α/2}[/tex]        X²[tex]_{27;0,01}[/tex]         12.878

n=28

S= 0.22

S²=0.0484

With a 98% confidence level, you'd expect the true value of the nicotine variance in menthol cigarettes is contained by the interval [0.0278;0.1001]

I hope it helps!