Answer:
ΔU = 3492.72 J
Explanation:
Given
m = 1.0 kg
v = 18 i m/s + 24 j m/s
To find the initial distance to determine the initial potential energy can use newton's equations
[tex]v = \sqrt{18^2 + 24 ^2} = 30m/s[/tex]
[tex]s = v_o*t + \frac{1}{2}*a *t^2[/tex]
[tex]s = 30 m/s * 6 s + 4.9 m/s^2 * 36 s^2 = 356.4 m[/tex]
Now the potential energy can be find using
[tex]E_p = m*g*h[/tex] and final energy as t=6 [tex]E_p = m*g*(h-356.4m)[/tex]
Initial and final energy can be related as:
ΔU = m*g*h - m*g*(h-356.4m)
So get the factor to solve the total energy
ΔU = m*g * (h - h + 356.4)
ΔU = 1.0 kg * 9.8 m/s^2 * 356.4 m
ΔU = 3492.72 J