Answer:
2.7067 eV
Explanation:
h = Planck's constant = [tex]6.626\times 10^{-34}\ m^2kg/s[/tex]
c = Speed of light = [tex]3\times 10^8\ m/s[/tex]
[tex]\lambda_0[/tex] = Threshold wavelength = 459 nm
Work function is given by
[tex]W_0=\frac{hc}{\lambda_0}\\\Rightarrow W_0=\frac{6.626\times 10^{-34}\times 3\times 10^8}{459\times 10^{-9}}\\\Rightarrow W_0=4.33072\times 10^{-19}\ J[/tex]
Converting to eV
[tex]1\ J=\frac{1}{1.6\times 10^{-19}}\ eV[/tex]
[tex]4.33072\times 10^{-19}\ J=4.33072\times 10^{-19}\times \frac{1}{1.6\times 10^{-19}}\ eV=2.7067\ eV[/tex]
The work function W0 of this metal is 2.7067 eV