Consider the reaction 4 HCl(g) + O2(g) =2 H2O(g) + 2 Cl2(g) Using the standard thermodynamic data in the tables linked above, calculate the equilibrium constant for this reaction at 298.15K. ANSWER:_______

delta G (kJ/mol)

HCL=-95.3

O2=0

H2O=-228.6

Cl2=0

Respuesta :

Answer:

The equilibrium constant for this reaction at 298.15 K is [tex]2.067\times 10^{13}[/tex].

Explanation:

The equation used to calculate Gibbs free change is of a reaction is:  

[tex]\Delta G^o_{rxn}=\sum [n\times \Delta G^o_f(product)]-\sum [n\times \Delta G^o_f(reactant)][/tex]

The equation for the enthalpy change of the above reaction is:

[tex]\Delta G^o_{rxn}=(2\times \Delta G^o_f_{(H_2O(g))}+2\times G^o_f_{(Cl_2(g))})-(4\times \Delta G^o_f_{(HCl(g))}+1\times G^o_f_{(O_2(g))})[/tex]

We are given:

[tex]\Delta G^o_f_{(HCl(g))}=-95.3 kJ/mol\\\Delta G^o_f_{(H_2O(g))}=228.6 kJ/mol[/tex]

[tex]\Delta G^o_f_{(O_2(g))}=\Delta G^o_f_{(Cl_2(g))}=0[/tex] (pure element)

Putting values in above equation, we get:

[tex]\Delta G^o_{rxn}=(2\times (-228.6 kJ/mol)+2\times 0 kJ/mol)-(4\times -95.3 kJ/mol+1\times 0 kJ/mol)=-76 kJ/mol[/tex]

To calculate the [tex]K_1[/tex] (at 25°C) for given value of Gibbs free energy, we use the relation:

[tex]\Delta G^o=-RT\ln K_1[/tex]

where,

[tex]\Delta G^o[/tex] = Gibbs free energy = -76 kJ/mol = -76000 J/mol  

(Conversion factor: 1kJ = 1000J)

R = Gas constant = [tex]8.314J/K mol[/tex]

T = temperature = 298.15 K[/tex]

[tex]K_1[/tex] = equilibrium constant at 25°C = ?

[tex]-76000 J/mol=-8.314J/K mol\times 298.145 K\ln K_1[/tex]

[tex]\ln K_1=\frac{-76000 J/mol}{-8.314J/K mol\times 298.15 K}[/tex]

[tex]K_1=2.067\times 10^{13}[/tex]

The equilibrium constant for this reaction at 298.15 K is [tex]2.067\times 10^{13}[/tex].