An oscillating LC circuit consists of a 61.5 mH inductor and a 3.77 μF capacitor. If the maximum charge on the capacitor is 3.56 μC, what are (a) the total energy in the circuit and (b) the maximum current?

Respuesta :

Answer:

[tex]1.68085\times 10^{-6}\ J[/tex]

0.00739 A

Explanation:

Q = Maximum charge on the capacitor = [tex]3.56\ \mu C[/tex]

C = Inductor capacitance = [tex]3.77\ \mu F[/tex]

L = Inductance = 61.5 mH

I = Current

Maximum energy in capacitor is given by

[tex]E=\frac{Q^2}{2C}\\\Rightarrow E=\frac{(3.56\times 10^{-6})^2}{2\times 3.77\times 10^{-6}}\\\Rightarrow E=1.68085\times 10^{-6}\ J[/tex]

Total energy in the circuit is [tex]1.68085\times 10^{-6}\ J[/tex]

Energy is also given by

[tex]E=\frac{LI^2}{2}\\\Rightarrow I=\sqrt{\frac{2E}{L}}\\\Rightarrow I=\sqrt{\frac{2\times 1.68085\times 10^{-6}}{61.5\times 10^{-3}}}\\\Rightarrow I=0.00739\ A[/tex]

The maximum current in the circuit is 0.00739 A