Given that Δ H ∘ f [ H ( g ) ] = 218.0 kJ ⋅ mol − 1 Δ H ∘ f [ C ( g ) ] = 716.7 kJ ⋅ mol − 1 Δ H ∘ f [ CH 4 ( g ) ] = − 74.6 kJ ⋅ mol − 1 calculate the average molar bond enthalpy of the carbon–hydrogen bond in a CH 4 molecule.
ΔHC−H=
kJ⋅mol−1

Respuesta :

Answer:

The average molar bond enthalpy of the carbon-hydrogen bond (ΔHC−H) = 415.83 KJ/mol

Explanation:

The complete equation for the reaction is:

[tex]C_{(s)} + 4H_{(g)}---CH_{4(g)}[/tex]            (1)

In the reaction above, we are forming 4 C-H bonds. Therefore,

Δ[tex]H_{rxn1}[/tex] = 4*(-x) kJ/mol

where 'x' is the average molar bond enthalpy of C-H bond and the negative sign signifies exothermic process (since we are forming a new compound).

The other two reactions are:

[tex]C_{(s)}[/tex]---[tex]C_{(g)}[/tex]                 (2)

[tex]2H_{(g)}[/tex]---[tex]4H_{(g)}[/tex]            (3)

Δ[tex]H_{rxn2}[/tex] = 716.7 kJ/mol

Δ[tex]H_{rxn3}[/tex] = 4*218 = 872 kJ/mol

Using Hess' law which states that the overall enthalpy change for a reaction is independent of the paths taken. we have:

summation of equations (1), (2) and 3:

[tex]C_{(s)}[/tex]---[tex]C_{(g)}[/tex]         Δ[tex]H_{rxn2}[/tex] = 716.7 kJ/mol

[tex]C_{(s)} + 4H_{(g)}---CH_{4(g)}[/tex]  Δ[tex]H_{rxn1}[/tex] = 4*(-x) kJ/mol

[tex]2H_{(g)}[/tex]---[tex]4H_{(g)}[/tex]   Δ[tex]H_{rxn3}[/tex] = 4*218 = 872 kJ/mol

we have:

[tex]C_{(s)}+2H_{2(g)}[/tex]---[tex]CH_{4(g)}[/tex]    Δ[tex]H_{f}[/tex] = 716.7-4x+872

where:

Δ[tex]H_{f}[/tex] = -74.6 kJ/mol

Therefore:  -74.6 = 716.7-4x+872    and x= 415.83 kJ/mol

Thus, the average molar bond enthalpy of the carbon-hydrogen bond in a [tex]CH_{4}[/tex] molecule is 415.83 kJ/mol