Answer: 601
Step-by-step explanation:
When the prior estimate of population proportion is not given , the formula we apply to find sample size :
[tex]n=0.25(\dfrac{z^*}{E})^2[/tex]
, where z* = critical z-value
E=Margin of error
Given : Margin of error = 0.04
Confidence level = 95%
We know that , according to the z-table , the critical value for 95% confidence interval = z*= 1.960
Then, the required sample size : [tex]n=0.25(\dfrac{1.960}{0.04})^2[/tex]
[tex]n=0.25(49)^2[/tex]
[tex]n=0.25(2401)=600.25\approx601[/tex]
Hence, the required minimum sample size = 601