Respuesta :
Answer:
Part - A:
[tex]1.8\times 10^{-4}mol[/tex]moles oxygen consumed.
Part - B:
The cockroach needs all the available oxygen in the jar not only 20%.
Explanation:
Part-A:
From the given,
Mass = 5.4 g
Time = one hour
Rate of consumption = [tex]\frac{0.8molO_{2}}{1g.hr}[/tex]
Volume of [tex]O_{2}[/tex] consumed:
[tex]V= Mass \times time \times rate\,of\,consumption[/tex]
[tex]=5.2g \times 1hr \times \frac{0.8molO_{2}}{1g.hr} = 4.32 ml[/tex]
Therefore, 4.32 ml of oxygen consumed in one hour by a 5.4 of cockroach moving at this speed.
Number of moles of oxygen consumed:
[tex]n=\frac{PV}{RT}[/tex]
[tex]n=\frac{1\times 4.32[\frac{1L}{1000mL}]}{0.082\times 297}=0.000177mol=1.8\times 10^{-4}mol[/tex]
Therefore, [tex]1.8\times 10^{-4}mol[/tex]moles oxygen consumed.
Part -B:
From the given,
P = Pressure = 1atm
V = Volume = 4.32 ml = 0.00432 L
R = Gas constant = 0.0821 L.atm/mol.K
T = 24 C = 273 + 24 = 297 K
Consumed moles of oxygen can be calculated by following formula.
[tex]n=\frac{PV}{RT}[/tex]
Substitute the all given values.
[tex]= \frac{1 \times 0.00432}{0.0821 \times 297}= 1.77 \times 10^{-4}mol[/tex]
Volume of available oxygen:
[tex]V= 1qt\,air \times \frac{0.946 L }{1\,qt}\times 0.21 O_{2}= 0.199 L[/tex]
Total moles of oxygen can be calculated by following formula.
[tex]n=\frac{PV}{RT}[/tex]
[tex]= \frac{1 \times 0.199L}{0.0821 \times 297}= 8.16 \times 10^{-3}mol[/tex]
Amount of oxygen used by cockroach:
[tex]= \frac{1.77 \times 10^{-4}mol}{1 hr}\times 48hr = 8.0 \times 10^{-3}mol[/tex]
Hence, The cockroach needs all the available oxygen in the jar not only 20%.