Respuesta :
Answer:
The capacitance and the inductance can choose for a car-alarm circuit are
C = 215.27 μF
L = 9.078 μH
Explanation:
[tex]V =12.0 V[/tex], [tex]E = 1.55*10^2 J[/tex], [tex]f = 3600 Hz[/tex]
To determine the capacitance can use the equation
[tex]U_c= \frac{1}{2}*C*V^2[/tex]
Solve to C'
[tex]C = \frac{U_c*2}{V^2}=\frac{1.55x10^2J*2}{12.0^2V}[/tex]
[tex]C=215.27 uF[/tex]
To find the inductance can use the frequency of the circuit
[tex]f = \frac{1}{2\pi* \sqrt{C*L} }[/tex]
Solve to L'
[tex]L = \frac{1}{4\pi^2*f^2*C}=\frac{1}{4\pi^2*3600^2*215.27 uF}}[/tex]
[tex]L = 9.078 uH[/tex]
The capacitance and the inductance which can be chosen for a car-alarm circuit are
- C = 215.27 μF
- L = 9.078 μH
Calculations and Parameters:
Hence, we need to lay the parameters:
V= 120v
E= 1.55 x 10^2J
f= 3600Hz
Then we solve for capacitance which is Uc= 0.5 x CV^2
=>1.55 x 10^2J2/12^2V
=> 215. 27uF
Then the inductance would be:
f= 1/(2[tex]\pi[/tex][tex]\sqrt{C x L}[/tex]
=> 9.078uH
Read more about capacitance here:
https://brainly.com/question/22989451