A uniform solid disk of mass m = 2.95 kg and radius r = 0.200 m rotates about a fixed axis perpendicular to its face with angular frequency 5.99 rad/s. (a) Calculate the magnitude of the angular momentum of the disk when the axis of rotation passes through its center of mass. kg · m2/s (b) What is the magnitude of the angular momentum when the axis of rotation passes through a point midway between the center and the rim? kg · m2/s Need Help? Read It

Respuesta :

Answer:

a)L =0.353 kg.m²/s

b)L =0.53 kg.m²/s

Explanation:

Given that

m= 2.95 kg

R = 0.2 m

ω = 5.99 rad/s

a)

Moment of inertia of disk about center

[tex]I=\dfrac{mR^2}{2}\ kg.m^2[/tex]

[tex]I=\dfrac{2.95\times 0.2^2}{2}\ kg.m^2[/tex]

I=0.059 kg.m²

L = I ω

L = 0.059 x 5.99

L =0.353 kg.m²/s

b)

[tex]r=\dfrac{R}{2}\ m[/tex]

r= 0.1 m

[tex]I=\dfrac{mR^2}{2}+mr^2\ kg.m^2[/tex]

[tex]I=\dfrac{2.95\times 0.2^2}{2}+2.95\times 0.1^2\ kg.m^2[/tex]

I=0.0885 kg.m²

L = 0.0885 x 5.99

L =0.53 kg.m²/s

Ver imagen Netta00