contestada

M, a solid cylinder (M=2.39 kg, R=0.123 m) pivots on a thin, fixed, frictionless bearing. A string wrapped around the cylinder pulls downward with a force F which equals the weight of a 0.870 kg mass, i.e., F = 8.535 N. Calculate the angular acceleration of the cylinder.

Respuesta :

Answer:

The angular acceleration of the cylinder is 58.06 rad/s².

Explanation:

Given that,

Mass [tex]M=2.39\ kg[/tex]

Radius [tex]R=0.123\ m[/tex]

Force [tex]F=8.535\ N[/tex]

Weight [tex]W=0.870\ kg[/tex]

We need to calculate the angular acceleration of the cylinder

Using formula of torque

[tex]\tau=I\alpha[/tex]

[tex]F\times r=\dfrac{1}{2}mr^2\times\alpha[/tex]

Where, F = force

r = radius

m = mass

Put the value into the formula

[tex]8.535\times0.123=\dfrac{1}{2}\times2.39\times(0.123)^2\times\alpha[/tex]

[tex]\alpha=\dfrac{2\times8.535\times0.123}{2.39\times(0.123)^2}[/tex]

[tex]\alpha=58.06\ rad/s^2[/tex]

Hence, The angular acceleration of the cylinder is 58.06 rad/s².

Answer:

[tex]\alpha=58.01\ rad.s^{-1}[/tex]

Explanation:

Given:

  • mass of solid cylinder, [tex]m=2.39\ kg[/tex]
  • radius of solid cylinder, [tex]r=0.123\ m[/tex]
  • tangential force on the solid cylinder, [tex]F_T=8.535\ N[/tex]

Moment of inertial of a solid cylinder:

[tex]I=\frac{1}{2} m.r^2[/tex]

[tex]I=0.5\times 2.39\times 0.123^2[/tex]

[tex]I=0.0181\ kg.m^2[/tex]

We know the torque is given as:

[tex]\tau=F_T\times r[/tex]

[tex]\tau=8.535\times 0.123[/tex]

[tex]\tau=1.05\ N.m[/tex]

Now, also

[tex]\tau=I.\alpha[/tex]

[tex]1.05=0.0181\times \alpha[/tex]

[tex]\alpha=58.01\ rad.s^{-1}[/tex]