Respuesta :

Answer:

[tex]y(x)=4x^2 -3x -10[/tex]

Step-by-step explanation:

First take the integral of dy/dx to find a general formula for y(x):

[tex]\frac{dy}{dx} =8x-3\\y(x) = \int{(8x-3)} \, dx =4x^2 -3x +c[/tex]

Then, evaluate the expression found above at y(2)=0 in order to find the value for the constant 'c':

[tex]y(x) = 4x^2 -3x +c\\y(2) = 0\\0= 4*(2)^2 -(3*2) +c\\c=6-16 = -10[/tex]

The expression for y(x) that satisfies both conditions is:

[tex]y(x)=4x^2 -3x -10[/tex]