The distance between the two points is 8.9 units.
(8, 15, 17) is a Pythagorean triplet.
Step-by-step explanation:
Find the distance between (-5, -8) and (-1, -16).
Given points are;
(-5,-8) and (-1,-16)
[tex]x_1 = -5 \ \ \ \ \ \ y_1=-8\\x_2=-1 \ \ \ \ \ \ y_2=-16[/tex]
Distance = [tex]\sqrt{(x_2-x_1)^2+(y_2-y_2)^2}[/tex]
[tex]Distance=\sqrt{(-1-(-5))^2+(-16-(-8))^2} \\Distance=\sqrt{(-1+5)^2+(-16+8)} \\Distance=\sqrt{(4)^2+(-8)^2} \\Distance=\sqrt{16+64} \\Distance=\sqrt{80} \\Distance=8.94\ units[/tex]
Rounding off to nearest tenth,
Distance = 8.9 units
The distance between the two points is 8.9 units.
Which of the following is a Pythagorean triplet?
We will apply pythagoras theorem on these sets to determine pythagorean triplet.
a²+b²=c²
(8, 15, 17)
a=8, b=15, c=17
[tex]8^2+15^2=17^2\\64+225=289\\289=289[/tex]
The given set is a Pythagorean triplet.
(2, 3, 5)
a=2, b=3, c=5
[tex]2^2+3^2=5^2\\4+9=25\\13\neq 25[/tex]
The given set is not a Pythagorean triplet.
(5, 7, 9)
a=5, b=7, c=9
[tex]5^2+7^2=9^2\\25+49=81\\74\neq 81[/tex]
The given set is not a Pythagorean triplet.
(6, 9, 11)
a=6, b=9, c=11
[tex]6^2+9^2=11^2\\36+81=121\\117\neq 121[/tex]
The given set is not a pythagorean triplet.
(8, 15, 17) is a Pythagorean triplet.
Keywords: Pythagoras theorem, points
Learn more about Pythagoras theorem at:
#LearnwithBrainly