Respuesta :
The expression for the initial velocity of the cannon ball is: [tex]v_i= (v_i cos\theta_i)x + (v_i sin\theta_i)y[/tex]
The expression for the initial velocity of the piece-1 after the collision is:
[tex]v_i=(v_i sin\theta'(-x) + (v_i cos\theta')y[/tex]
The expression for the angle is:
[tex]\theta' -90^o[/tex]
Then the expression for the initial velocity of the piece-1 after the collision is:
[tex]v_i= (v_i sin\theta')(-x) + (v_icos\theta')y\\\\= -(v_i sin (\theta_1 -90^o))x + (v_1 cos(\theta_1 —90^o))y[/tex]
The expression for the initial velocity of the piece-2 after the collision is:
[tex]v_2=(v_2 cos\theta_2 ) x + (v_2 sin\theta_2)(-y)\\\\= (v_2 cos\theta_2)x- (v_2 sin\theta_2)y[/tex]
The expression for the law of conservation of momentum for the cannon ball and the two pieces is
[tex]m_{c}v_{i} = m_{1}v_{1}+m_{2}v_{2}\\\\=m_c ((v_1cos\theta_1)x+(v_1sin\theta_1)y)=m_1(-(v_1 sin(\theta_1-90^o))x+(v_1cos(\theta_1-90^o))y)+m_2( (v_2cos\theta_2)x-(v_2sin\theta_2)y)\\\\=(m_cv_1cos\theta_1)x+(m_cv_1v_1sin\theta_1)y=((m_2v_2 cos(\theta_2)-m_1v_1sin(\theta_1-90^o)))x+((m_1v_1cos(\theta_1-90^o))-(m_2v_2sin\theta_2))y[/tex]
Compare the x and y-components of the above equation as follows:
[tex](m_2v_2 cos\theta_2)-(m_1v_1 sin (\theta_1 —90^o))= m_cv_icos \theta_1\\\\ m_2v_2 cos\theta_2=m_1v_1 sin (\theta_1 —90^o)+m_cv_icos \theta_1.........(1)\\\\m_1v_1 cos (\theta_1 —90^o))- (m_2v_2 sin\theta_2)=m_cv_isin \theta_1\\\\m_2v_2 sin\theta_2=m_1v_1 cos (\theta_1 —90^o)+m_cv_isin\theta_1.........(2)[/tex]
Square and add equations (1) and (2) as follows:
[tex](m_2v_2cos\theta_2)^2=(m_1v_1sin(\theta_1-90^o)+m_cv_1cos\theta_1)^2+(m_2v_2sin\theta_2)^2=(m_1v_1cos(\theta_1-90^o)+m_cv_1sin\theta_1)^2\\\\=(m_2v_2)^2=(m_1v_1sin(\theta_1-90^o)+m_cv_1cos\theta_1)^2+(m_1v_1cos(\theta_1 —90^o))-(m_cv_1sin\theta_1)^2\\\\v_2=\frac{1}{m_2}[tex]\sqrt{(m_1v_1sin(\theta_1-90^o)+m_cv_1cos\theta_1)^2+(m_1v_1cos(\theta_1 —90^o))-(m_cv_1sin\theta_1)^2}[/tex]
Calculate the magnitude of the velocity of the piece-2 as follows
[tex]v_2=\frac{1}{m_2}\sqrt{(m_1v_1sin(\theta_1-90^o)+m_cv_1cos\theta_1)^2+(m_1v_1cos(\theta_1 —90^o))-(m_cv_1sin\theta_1)^2}\\\\=\frac{1}{0.1}\sqrt{((0.2kg)(5m/s)sin(150-90)^o+(0.30kg)(20m/s)cos39.7))^2+((0.2kg)(5m/s)cos(150 —90)^o-(0.30kg)(20m/s)sin39.7)^2}[/tex]