contestada

A space probe is launched from earth, headed for deep space. At a distance of 15,000 miles from the Earth center, the gravitational force on it is 800 lb.

Respuesta :

Answer: 200 lb

Explanation:

The rest of the question is written below:

What is the size of the force when it is at 30,000 miles from the Earth's center?

According to Newton's Universal Law of Gravitation:

[tex]F=G\frac{Mm}{r^2}[/tex]  (1)

Where:

[tex]F[/tex]  is the gravitational force

[tex]G[/tex]is the gravitational constant

[tex]M[/tex]  is the mass of the Earth

[tex]m[/tex] is the mass of the probe

[tex]r[/tex] is the distance between the Earth and the probe

In this case we have:

[tex]F_{1}=800 lb[/tex]   gravitational force when the distance is [tex]r_{1}=15000 mi[/tex] and we have to find [tex]F_{2}[/tex]   gravitational force when the distance is [tex]r_{2}=30000 mi[/tex].

Then:

[tex]F_{1}=G\frac{Mm}{r_{1}^2}[/tex]  (2)

[tex]F_{2}=G\frac{Mm}{r_{2}^2}[/tex]  (3)

Dividing (2) by (3):

[tex]\frac{F_{1}}{F_{2}}=\frac{G\frac{Mm}{r_{1}^2}}{G\frac{Mm}{r_{2}^2}}[/tex]  (4)

Simplifying:

[tex]\frac{F_{1}}{F_{2}}=\frac{r_{2}^2}{r_{1}^2}[/tex]  (5)

Finding [tex]F_{2}[/tex]:

[tex]F_{2}=F_{1}\frac{r_{2}^2}{r_{1}^2}[/tex]  (6)

[tex]F_{2}=800 lb\frac{(15000 mi)^2}{(30000 mi)^2}[/tex]  (7)

Finally:

[tex]F_{2}=200 lb[/tex]