Answer:
The point M is (10,7.5).
Step-by-step explanation:
Given:
AB is in a ratio of 5:5. A is at (0, 15) and B is at (20,0).
Now, to find the point M that divides the segment AB.
The points are A (0,15) and B (20,0) of the segment AB, which divides the point into [tex]m_{1}andm_{2}[/tex] .
So, [tex]m_{1}=5,m_{2}=5[/tex].
[tex]A= (x_{1},y_{1} )(0,15)[/tex] and [tex]B=(x_{2},y_{2})(20,0)[/tex]
So, by putting the formula to find M.
[tex]x= \frac{m_{1} x_{2}+m_{2}x_{1}} {m_1+m_2}[/tex]
[tex]x= \frac{5\times 20+5\times 0}{5+5}[/tex]
[tex]x= \frac{100}{10}[/tex]
[tex]x=10[/tex]
[tex]y= \frac{m_{1} y_{2}+m_{2}y_{1}} {m_1+m_2}[/tex]
[tex]y= \frac{5\times 0+5\times 15}{5+5}[/tex]
[tex]y= \frac{75}{10}[/tex]
[tex]y=7.5[/tex]
So, the required point is [tex](x,y)[/tex]=(10,7.5)
Therefore, the point M is (10,7.5).