A particle has a de Broglie wavelength of 2.1 × 10-10m. Then its kinetic energy increases by a factor of 3. What is the particle's new de Broglie wavelength, assuming that relativistic effects can be ignored?

Respuesta :

Answer:

[tex]\lambda' =1.21\times 10^{-10}\ m [/tex]

Explanation:

given,

de broglie wavelength of the particle = 2.1 × 10⁻¹⁰m

Kinetic energy increase factor = 3

de broglie  wavelength of new particle = ?

we know,

[tex]P = \dfrac{h}{\lambda}[/tex]

Kinetic energy

[tex]K =\dfrac{p^2}{2m}[/tex]

[tex]K =\dfrac{h^2}{2m\lambda^2}[/tex]...........(1)

Kinetic energy of other particle

[tex]3K =\dfrac{h^2}{2m\lambda'^2}[/tex]............(2)

dividing equation (1)/(2)

[tex]\dfrac{1}{3} =\dfrac{\lambda'^2}{\lambda^2}[/tex]

[tex]\lambda' = \dfrac{\lambda'}{\sqrt{3}}[/tex]

[tex]\lambda' = \dfrac{2.1\times 10^{-10}}{\sqrt{3}}[/tex]

[tex]\lambda' =1.21\times 10^{-10}\ m [/tex]