A wooden tool is found at an archaeological site. Estimate the age of the tool using the following information: A 100 gram sample of the wood emits 1120 β-particles per minute from the decay of carbon-14. The decay rate of carbon-14 in living trees is 15.3 per minute per gram. Carbon-14 has a half-life of 5730 years.

Respuesta :

Answer:

2578.99 years

Explanation:

Given that:

100 g of the wood is emitting 1120 β-particles per minute

Also,

1 g of the wood is emitting 11.20 β-particles per minute

Given, Decay rate = 15.3 % per minute per gram

So,

Concentration left can be calculated as:-

C left = [tex][A_t]=\frac{11.20\ per\ minute}{15.3\ per\ minute\ per\ gram}\times [A_0]= 0.7320[A_0][/tex]

Where,  

[tex][A_t][/tex] is the concentration at time t

[tex][A_0][/tex] is the initial concentration

Also, Half life of carbon-14 = 5730 years

[tex]t_{1/2}=\frac {ln\ 2}{k}[/tex]

Where, k is rate constant

So,  

[tex]k=\frac {ln\ 2}{t_{1/2}}[/tex]

[tex]k=\frac {ln\ 2}{5730}\ years^{-1}[/tex]

The rate constant, k = 0.000120968 year⁻¹

Time =?

Using integrated rate law for first order kinetics as:

[tex][A_t]=[A_0]e^{-kt}[/tex]

So,  

[tex]\frac {[A_t]}{[A_0]}=e^{-0.000120968\times t}[/tex]

[tex]\frac {0.7320[A_0]}{[A_0]}=e^{-0.000120968\times t}[/tex]

[tex]0.7320=e^{-0.000120968\times t}[/tex]

[tex]ln\ 0.7320=-0.000120968\times t[/tex]

t = 2578.99 years