8. An ant on a picnic table travels 30 cm eastward, then 25 cm northward, and finally 15 cm westward. What is the ant's displacement, angle, and direction
relative to its original position?

Respuesta :

Answer:

The displacement of the ant, R = 29.15 cm

The angle of the resultant displacement with its original position is, θ = 30° 57'

The direction of the displacement is towards the northeast.  

Explanation:

Given data,

The displacement towards east, d₁ = 30 cm

The displacement towards north, d₂ = 25 cm

The displacement towards  west, d₃ = 15 cm

The total displacement towards east,

                                       d₄ = d₁ - d₃

                                           = 30 - 15

                                           = 15 cm

The total displacement of ant is given by the resultant displacement,

                            R = √(d₂² + d₄² + 2· d₂ d₄ CosФ)

Where Ф is the angle between the vectors, d₂ & d₄

                                                Ф = 90°

Therefore,

                               R = √(d₂² + d₄²)

Substituting in the above equation,

                               R = √(25² + 15²)

                                  = 29.15 cm

Hence, the displacement of the ant, R = 29.15 cm

The angle of the resultant displacement with its original position is,

                                θ = tan⁻¹ (d₄ / d₂)

                                   = tan⁻¹ (15 / 25)

                                   = tan⁻¹ 0.6

                                   = 30° 57'

Hence, the angle of the resultant displacement the its original position is, θ = 30° 57'

The direction of the displacement is towards the northeast.                                            

Answer:

The displacement relative to original position is 15 cm.

The angle relative to original position is 30.96 degree.

The direction relative to original position is North-East direction.

Explanation:

Given data:

Distance travelled eastward is, [tex]d_{e}=30 \;\rm cm[/tex]

Distance travelled northward is, [tex]d_{n}= 25 \;\rm cm[/tex].

Distance travelled westward is, [tex]d_{w}=15 \;\rm cm[/tex].

The net displacement covered by ant in eastward direction is,

[tex]d_{net}=d_{e}-d_{w}\\d_{net}=30 \;\rm cm-15 \;\rm cm\\d_{net}=15 \;\rm cm[/tex]

The displacement relative to the original position is,

[tex]d_{resultant}=\sqrt{d^{2}_{net}+d^{2}_{n}} \\d_{resultant}=\sqrt{15^{2}+25^{2}} \\d_{resultant}=29.15 \;\rm cm[/tex]

The angle relative to the original position is,

[tex]tan\theta=\dfrac{d_{net}}{d_{n}} \\\theta=tan^{1}(\dfrac{d_{net}}{d_{n}}) \\\theta=tan^{1}(\dfrac{15}{25})\\\theta=30.96 \;\rm degree (North-East)[/tex]

Thus, angle relative to original position is 30.96 degree.

The direction of ant relative to the original position is North-East.

For more details, refer to the link:

https://brainly.com/question/12874363?referrer=searchResults