Respuesta :

Answer:

[tex]Length=24.32[/tex] feet

[tex]width=12.32[/tex] feet

Step-by-step explanation:

Let x be the width of a rectangle

Let l be the length of a rectangle

Let A be the area of rectangle

Given.

Length must be 12 feet longer than width

therefore

[tex]Length=12+w[/tex]

[tex]l=12+w[/tex]

Area of rectangle

[tex]A=300[/tex]

We know that area of rectangle is

[tex]A=l\times w[/tex]---------------------(1)

put all known values in equation 1

[tex]300=(12+x)\times x[/tex]

[tex]x^{2} +12x=300\\x^{2} +12x-300=0[/tex]

Find roots by this formula

[tex]=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}[/tex]

[tex]=\frac{-12\pm\sqrt{12^{2}-4(1)(-300)}}{2(1)}[/tex]

[tex]=\frac{-12\pm\sqrt{1344}}{2}[/tex]

[tex]x=-6+4\sqrt{21} \\x=-6-4\sqrt{21}[/tex]

[tex]x=12.32\\x=-24.32[/tex]

check both value in equation 1

for [tex]x=12.32[/tex]

[tex]A=(12+12.32)\times 12.32[/tex]

[tex]A=299.62[/tex]

[tex]x=12.32[/tex] is satisfy the equation

So The length of rectangle [tex]l=12+12.32[/tex]=24.32 feet

And width is 12.32 feet