Respuesta :

Answer:

The answer is  {[tex]x^{3}[/tex]-(5)[tex]x^{2}[/tex] (36)× [tex]x[/tex]-(180)

Step-by-step explanation:

   A polynomial with rational coefficients has roots 5 and -6i (There i is the    

   imaginary number not variable )

   As we knew that imaginary no comes in pair . This means that if  -6i is

   one root then the other root will be 6i

   So if we assume the lowest polynomial that is possible is given as

    {[tex]x^{3}[/tex]-(sum of all roots)[tex]x^{2}[/tex] +(roots taken two at a time)

    [tex]x[/tex]-(product of all roots)

    {[tex]x^{3}[/tex]-(5+6i+(-6i))[tex]x^{2}[/tex] +(5×6i +5×(-6i) +6i×(-6i))

    [tex]x[/tex]-(5×6i×(-6i))

    [tex]i^2[/tex] = -1

    {[tex]x^{3}[/tex]-(5)[tex]x^{2}[/tex] (36)× [tex]x[/tex]-(180)

   The general case we assume that the three previous roots and rest roots

   a4,a5,a6 ...............an

  [tex]x^n[/tex]-(sum of all roots)×[tex]x^{n-1}[/tex] +(roots taken two at a  

   time) ×[tex]x^{n-2}[/tex]- .......................................... (product of all roots)