Respuesta :

Answer:

The values are

a = -13

b = -84

Step-by-step explanation:

Given:

z=6-7i and

[tex]z^{2}=a + bi[/tex]

To Find:

a = ?

b = ?

Solution:

Z is Complex Number consist of Real part and Imaginary part

We have

[tex]z=6-7i\\\textrm{squaring on both the side we get}\\z^{2}=(6-7i)^{2}[/tex]

Using the identity [tex](A-B)^{2} =A^{2}-2AB+ B^{2}[/tex] we get

[tex]z^{2} =6^{2}-2\times 6\times 7i+ (7i)^{2}\\z^{2} =36-84i+49i^{2}\\[/tex]

i² = -1

∴ [tex]z^{2} =36-84i+49(-1)\\z^{2} =36-49-84i\\z^{2} =-13-84i[/tex]

Now on comparing with  [tex]z^{2}=a + bi[/tex]  equation we get

a = -13

b = -84