Box A is 567 inches high, 678 inches wide, and 789 inches long. It has a maximum capacity of 1,200 marbles, Box B has three times the height, four times the width, and the same length as Box A. What is the maximum capacity of Box B?

Respuesta :

Answer:

1701 high

2712 wide

789 long

= 4413

Step-by-step explanation:

The volume of a box is the amount of space in it

The maximum capacity of box B is 14400

The dimensions of box A are:

[tex]\mathbf{Height = 567}[/tex]

[tex]\mathbf{Width = 678}[/tex]

[tex]\mathbf{Length = 789}[/tex]

The dimensions of box B are:

[tex]\mathbf{Height = 3 \times 567 = 1701}[/tex]

[tex]\mathbf{Width = 4 \times 678 = 2712}[/tex]

[tex]\mathbf{Length = 289}[/tex]

Calculate the volumes of both boxes

[tex]\mathbf{V_A = 567 \times 678 \times 789}[/tex]

[tex]\mathbf{V_A = 303312114}[/tex]

[tex]\mathbf{V_B = 1701 \times 2712 \times 789}[/tex]

[tex]\mathbf{V_B = 3639745368}[/tex]

Express as ratios

[tex]\mathbf{VA: V_B = 303312114 : 3639745368}[/tex]

Substitute 1200 for VA (the capacity of box A)

[tex]\mathbf{1200 : V_B = 303312114 : 3639745368}[/tex]

Express as fractions

[tex]\mathbf{\frac{V_B }{1200}= \frac{ 3639745368}{303312114}}[/tex]

[tex]\mathbf{\frac{V_B }{1200}= 12}[/tex]

Make Vb the subject

[tex]\mathbf{V_B = 12 \times 1200}[/tex]

[tex]\mathbf{V_B = 14400}[/tex]

Hence, the maximum capacity of box B is 14400

Read more about volumes at:

https://brainly.com/question/23952628