You wish to place a spacecraft in a circular orbit around the earth so that its orbital speed will be 4.00×103m/s. What is this orbit's radius?

Respuesta :

Answer:

The radius of orbit=[tex]2.49\times 10^7 m[/tex]

Explanation:

We are given that

Orbital speed=[tex]4.00\times 10^3[/tex]m/s

We have to find the radius of orbit of spacecraft.

We know that

Gravitational constant=[tex]6.67\times 10^{-11}m^3/kgs^2[/tex]

Mass of earth=[tex]5.972\times 10^{24} kg[/tex]

Orbital speed=[tex]\sqrt{\frac{GM}{r}}[/tex]

Where G= Gravitational constant

M=Mass of earth

r=Radius of orbit

Substitute the values in the formula

[tex]4\times 10^3=\sqrt{\frac{6.67\times 10^{-11}\times 5.972\times 10^{24}}{r}[/tex]

Squaring on both sides

[tex]16\times 10^6=\frac{6.67\times 10^{-11}\times 5.972\times 10^{24}}{r}[/tex]

[tex]r=\frac{6.67\times 10^{-11}\times 5.972\times 10^{24}}{16\times 10^6}[/tex]

[tex]r=2.49\times 10^7 m[/tex]

Hence, the radius of orbit=[tex]2.49\times 10^7 m[/tex]