Answer : The temperature of water is, [tex]57.7^oC[/tex]
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.
[tex]q_1=-q_2[/tex]
[tex]m_1\times c_1\times (T_f-T_1)=-m_2\times c_2\times (T_f-T_2)[/tex]
where,
[tex]c_1[/tex] = specific heat of thermometer = [tex]804J/kg.^oC=0.804J/g^oC[/tex]
[tex]c_2[/tex] = specific heat of water = [tex]4.18J/g.^oC[/tex]
[tex]m_1[/tex] = mass of thermometer = 33.0 g
[tex]m_2[/tex] = mass of water = 149 g
[tex]T_f[/tex] = final temperature = [tex]56.0^oC[/tex]
[tex]T_1[/tex] = initial temperature of thermometer = [tex]15.4^oC[/tex]
[tex]T_2[/tex] = initial temperature of water = ?
Now put all the given values in the above formula, we get:
[tex]33.0g\times 0.804J/g^oC\times (56.0-15.4)^oC=-149g\times 4.18J/g.^oC\times (56.0-T_2)^oC[/tex]
[tex]T_2=57.7^oC[/tex]
Therefore, the temperature of water is, [tex]57.7^oC[/tex]