A 5.73 kg bowling ball moves in a straight line at 1.6 m/s.
How fast must a 3.6 g ping-pong ball move in a straight line so that the two balls have the same momentum?
Answer in units of m/s

Respuesta :

Answer: 2546.66 m/s

Explanation:

We have the following data:

[tex]m_{1}=5.73 kg[/tex] is the mass of the bowling ball

[tex]V_{1}=1.6m/s[/tex] is the velocity of the bowling ball

[tex]m_{2}=3.6 g \frac{1 kg}{1000 g}=0.0036 kg[/tex] is the mass of the ping-pong ball

[tex]V_{2}[/tex] is the velocity of the ping-pong ball

Now, the momentum [tex]p_{1}[/tex] of the bowling ball is:

[tex]p_{1}=m_{1}V_{1}[/tex] (1)

[tex]p_{1}=(5.73 kg)(1.6m/s)[/tex]

[tex]p_{1}=9.168 kg m/s[/tex] (2)

And the momentum [tex]p_{2}[/tex] of the ping-pong ball is:

[tex]p_{2}=m_{2}V_{2}[/tex] (3)

If the momentum of the bowling ball is equal to the momentum of the ping-pong ball:

[tex]p_{1}=p_{2}[/tex] (4)

[tex]m_{1}V_{1}=m_{2}V_{2}[/tex] (5)

Isolating [tex]V_{2}[/tex]:

[tex]V_{2}=\frac{m_{1}V_{1}}{m_{2}}[/tex] (6)

[tex]V_{2}=\frac{9.168 kg m/s}{0.0036 kg}[/tex] (7)

Finally:

[tex]V_{2}=2546.66 m/s[/tex]