Respuesta :
Answer:
[tex]f(x)=3(x+3)^{2}-27[/tex]
Step-by-step explanation:
we have
[tex]f(x)=18x+3x^{2}[/tex]
Write the function in standard form
[tex]f(x)=3x^{2}+18x[/tex]
Factor 3 out of the first two terms
[tex]f(x)=3(x^{2}+6x)[/tex]
Form a perfect square trinomial. (six-halves) squared
[tex]f(x)=3(x^{2}+6x+9)-3(9)[/tex]
[tex]f(x)=3(x^{2}+6x+9)-27[/tex]
Write the trinomial as a binomial squared
[tex]f(x)=3(x+3)^{2}-27[/tex]
therefore
The vertex is the point (-3,-27)
Answer:
3
Step-by-step explanation:
f(x)=3(x+3)2−27
the missing value is 3