A particular planet has a moment of inertia of 8.26 × 1036 kg⋅m2 and a mass of 6.54 × 1022 kg. Based on these values, what is the planet's radius? Hint: Because planets are the shape of a sphere, the moment of inertia is I = (2/5)mr2.

7.12 × 106 m
1.78 × 107 m
5.05 × 1013 m
3.16 × 1014

Respuesta :

Answer: Correct answer is B = 1.776933×[tex]10^{7}[/tex]

Explanation:

Given :

Moment of inertia I = 8.26×[tex]10^{36}[/tex] kg[tex]m^{2}[/tex]

Mass of planet m = 6.54×[tex]10^{22}[/tex] kg

Also, Planet is solid sphere so that, Moment of inertia is I = [tex]\frac{2}{5}[/tex] m[tex]R^{2}[/tex] =0.4m[tex]R^{2}[/tex]

Where R is radius of planet

Putting into calculation

We get,

I = [tex]\frac{2}{5}[/tex] m[tex]R^{2}[/tex]

8.26×[tex]10^{36}[/tex] =  0.4×6.54×[tex]10^{22}[/tex]×[tex]R^{2}[/tex]

8.26×[tex]10^{14}[/tex] = 2.616 [tex]R^{2}[/tex]

3.15749235×[tex]10^{14}[/tex] = [tex]R^{2}[/tex]

R =  1.776933×[tex]10^{7}[/tex]

Thus, Correct answer is B = 1.776933×[tex]10^{7}[/tex]