Respuesta :
Answer:
(a) pSO₂Cl₂ = 0.14 atm
pSO₂ = pCl₂ = x = 0.58 atm
(b) Kp = 2.4
Explanation:
Let's consider the following reaction.
SO₂Cl₂(g) ⇄ SO₂(g) + Cl₂(g)
We can calculate the initial pressure of SO₂Cl₂ using the ideal gas equation.
[tex]P.V=n.R.T=\frac{m}{M} .R.T\\P=\frac{m.R.T}{M.V} =\frac{3.174g\times (0.08206atm.L/mol.K) \times 373.15K}{(134.97g/mol) \times 1.000L} =0.7201atm[/tex]
We can find the partial pressures at equilibrium using an ICE chart. In this chart, we complete each row with the pressure or change in pressure in each stage.
SO₂Cl₂(g) ⇄ SO₂(g) + Cl₂(g)
I 0.7201 0 0
C -x +x +x
E 0.7201 - x x x
At equilibrium, the sum of partial pressures is equal to the total pressure.
pSO₂Cl₂ + pSO₂ + pCl₂ = 1.30 atm
(0.7201 - x) + x + x = 1.30 atm
x = 0.58 atm
pSO₂Cl₂ = 0.7201 - x = 0.14 atm
pSO₂ = pCl₂ = x = 0.58 atm
The equilibrium constant (Kp) is:
[tex]Kp=\frac{pSO_{2}.PCl_{2}}{pSO_{2}Cl_{2}} =\frac{0.58^{2} }{0.14} =2.4[/tex]