A tennis ball can in the shape of a right circular cylinder holds three tennis balls snugly. If the radius of a tennis ball is 3.3 ​cm, what percentage of the can is not occupied by tennis​ balls?

Respuesta :

Answer:

Step-by-step explanation:

1.- Volumeo f the circular cylinder  (to holds three balls)

each ball is 3,3 cm radius then is 6,6 cm  diameter

Then 3 diameters are equal to  3* 6.6  = 19,8 cm  (the height of the cylinder)

Then the volume of the cylinder is

V(c)  = π*r²*h   ⇒       V(c)  =3,14*(3,3)²*19,8      ⇒  V(c)  =  677.05 cm³

Now the volume of a tennis ball (is an sphere)

V(s)  = 4/3*π*r³   ⇒  V(s)  =4/3*3,14 * (3,3)³   ⇒   V(s)  = 150,46 cm³

We have three balls then volume of the three balls

150,46*3  = 451.37 cm³

So   V(c)  = 677,05 cm³       V(bt)  =  451,41

V(c) /V(bt)  =  677,05/ 451,41    = 1,498

Then V(c)  is 49.8 % bigger than of V(bt) of three balls