Answer:
13.00079 s
0.36246 m/s
Explanation:
L = Length of cable = 42 m
g = Acceleration due to gravity = 9.81 m/s²
[tex]\omega[/tex] = Angular frequency =[tex]2\pi f[/tex]
f = Frequency = [tex]f=\frac{1}{T}[/tex]
A = Ampliltude = 75 cm
Time period is given by
[tex]T=2\pi\sqrt{\frac{L}{g}}\\\Rightarrow T=2\pi\sqrt{\frac{42}{9.81}}\\\Rightarrow T=13.00079\ s[/tex]
The period of oscillation fo the building is 13.00079 s
As the motion is in simple harmonic motion we use the following equation to find maximum velocity
[tex]v_m=\omega A\\\Rightarrow v_m=2\pi fA\\\Rightarrow v_m=2\pi \frac{1}{13.00079}\times 0.75\\\Rightarrow v_m=0.36246\ m/s[/tex]
The maximum speed of the pendulum is 0.36246 m/s