Answer:
lower bound-8.106
8.02≤μ≤8.93 is the confidence interval
Step-by-step explanation:
given
mean(x)=8.48 MPa
standard deviation(s)=0.79 MPa
as we dont know the population standard deviation so we use t-stat
formula
tα,n-1=t=[tex]\frac{x-μ}{[tex]\frac{s}{√n}[/tex]}[/tex]
[tex][/tex]
where
s-sample standard deviation
x-sample mean
μ-population mean
n-sample size
for 95% confidence interval and 13 degrees of freedom
t=1.771 (one tail ,as only lower bound is needed)
for lower bound
x-t×[tex]\frac{s}{√n}[/tex]≤μ
8.48-1.771×[tex]\frac{0.79}{√14}[/tex]≤μ
μ≥8.106
confidence interval
t=2.160 (two tailed)
x-t×[tex]\frac{s}{√n}[/tex]≤μ≤x+t×[tex]\frac{s}{√n}[/tex]
8.48-2.160×[tex]\frac{0.79}{√14}[/tex]≤μ≤8.48+2.160×[tex]\frac{0.79}{√14}[/tex]
8.02≤μ≤8.93 is the confidence interval required