A laboratory tested 12 chicken eggs and found that the mean cholesterol was 246 mg with a standard deviation of 11.7 mg. Construct a 95% CI for the true mean cholesterol content of all such eggs.

Respuesta :

Answer: [tex](238.57,\ 253.43)[/tex]

Step-by-step explanation:

When population standard deviation is not given , then the formula to find the confidence interval for population mean is given by :-

[tex]\overline{x}\pm t_{\alpha/2}\dfrac{s}{\sqrt{n}}[/tex]

, where [tex]\overline{x}[/tex] = sample mean.

s= sample standard deviation.

n= sample size.

[tex]t_{\alpha/2}[/tex] = Critical t-value (two tailed ).

Given : n= 12 ,  [tex]\overline{x}=246[/tex]  , s=11.7

Significance level = [tex]\alpha=1-0.95=0.05[/tex]

Degree of freedom : n- 1= 11

Using t- distribution , the critical t-value =[tex]t_{\alpha/2, df}=t_{0.025,\ 11}=2.2010[/tex]

Now, the required  95% CI for the true mean cholesterol content of all such eggs will be :-

[tex]246\pm (2.2010)\dfrac{11.7}{\sqrt{12}}\\\\=246\pm(2.2010)(3.3775)\\\\=\\\\=246\pm7.4339=(246-7.4338,\ 246+ 7.4338)\\\\=(238.5662,\ 253.4338)\approx(238.57,\ 253.43)[/tex]

Hence, the required confidence interval = [tex](238.57,\ 253.43)[/tex]