Vertex of parabola is y= [tex]-x^{2} +8x-22[/tex] at (4,6)
Step-by-step explanation:
The given equation of parabola is y= [tex]-x^{2} +8x-22[/tex]
Simplifying the equation,
y= [tex]-x^{2} +8x-22[/tex]
y= [tex](-1)(x^{2}-8x-+22)[/tex]
y= [tex](-1)(x^{2} -8x + 16-16+22)[/tex]
y= [tex](-1)[(x^{2} -8x + 16)-(16-22)][/tex]
y= [tex](-1)[(x-4)^{2}+(+6)][/tex]
y= [tex](-1)(x-4)^{2}+(+6)(-1)[/tex]
y= [tex](-1)(x-4)^{2}+(-6)[/tex]
The general equation of parabola is y = y= [tex]a(x+h)^{2}+k[/tex]
Where, (h,k) is vertex of parabola.
On comparing the equations
we get,
Vertex of parabola is y= [tex]-x^{2} +8x-22[/tex] at (4,-6)