Respuesta :

Vertex of parabola is y= [tex]-x^{2} +8x-22[/tex] at (4,6)

Step-by-step explanation:

The given equation of parabola is y= [tex]-x^{2} +8x-22[/tex]

Simplifying the equation,

y= [tex]-x^{2} +8x-22[/tex]

y= [tex](-1)(x^{2}-8x-+22)[/tex]

y= [tex](-1)(x^{2} -8x + 16-16+22)[/tex]

y= [tex](-1)[(x^{2} -8x + 16)-(16-22)][/tex]

y= [tex](-1)[(x-4)^{2}+(+6)][/tex]

y= [tex](-1)(x-4)^{2}+(+6)(-1)[/tex]

y= [tex](-1)(x-4)^{2}+(-6)[/tex]

The general equation of parabola is y = y= [tex]a(x+h)^{2}+k[/tex]

Where, (h,k) is vertex of parabola.

On comparing the equations

we get,

Vertex of parabola is y= [tex]-x^{2} +8x-22[/tex] at (4,-6)